Salmonella Typhimurium Co-Opts the Host Type I IFN System To Restrict Macrophage Innate Immune Transcriptional Responses Selectively.

نویسندگان

  • Darren J Perkins
  • Rajesh Rajaiah
  • Sharon M Tennant
  • Girish Ramachandran
  • Ellen E Higginson
  • Tristan N Dyson
  • Stefanie N Vogel
چکیده

Innate immune inflammatory responses are subject to complex layers of negative regulation at intestinal mucosal surfaces. Although the type I IFN system is critical for amplifying antiviral immunity, it has been shown to play a homeostatic role in some models of autoimmune inflammation. Type I IFN is triggered in the gut by select bacterial pathogens, but whether and how the type I IFN might regulate innate immunity in the intestinal environment have not been investigated in the context of Salmonella enterica serovar Typhimurium (ST). ST infection of human or murine macrophages reveals that IFN-β selectively restricts the transcriptional responses mediated by both the TLRs and the NOD-like receptors. Specifically, IFN-β potently represses ST-dependent innate induction of IL-1 family cytokines and neutrophil chemokines. This IFN-β-mediated transcriptional repression was independent of the effects of IFN-β on ST-induced macrophage cell death, but significantly dependent on IL-10 regulation. We further evaluated ST pathogenesis in vivo following oral inoculation of mice lacking IFN-β. We show that IFN-β(-/-) mice exhibit greater resistance to oral ST infection and a slower spread of ST to distal sterile sites. This work provides mechanistic insight into the relationship between ST and type I IFN, and demonstrates an additional mechanism by which IFN-β may promote spread of enteric pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathwa...

متن کامل

Salmonella Suppresses the TRIF-Dependent Type I Interferon Response in Macrophages

UNLABELLED Salmonella enterica is an intracellular pathogen that causes diseases ranging from gastroenteritis to typhoid fever. Salmonella bacteria trigger an autophagic response in host cells upon infection but have evolved mechanisms for suppressing this response, thereby enhancing intracellular survival. We recently reported that S. enterica serovar Typhimurium actively recruits the host tyr...

متن کامل

Activation of macrophage mediated host defense against Salmonella typhimurium by Morus alba L.

Background The innate immune system plays a crucial role in the initiation and subsequent direction of adaptive immune responses, as well as in the removal of pathogens that have been targeted by an adaptive immune response. Objective Morus alba L. was reported to have immunostimulatory properties that might protect against infectious diseases. However, this possibility has not yet been explo...

متن کامل

Enhancement of Host Immune Responses by Oral Vaccination to Salmonella enterica serovar Typhimurium Harboring Both FliC and FljB Flagella

Flagellin, the structural component of the flagellar filament in various motile bacteria, can contribute to the activation of NF-κB and proinflammatory cytokine expression during the innate immune response in host cells. Thus, flagellin proteins represent a particularly attractive target for the development of vaccine candidates. In this study, we investigated the immune response by increasing ...

متن کامل

Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 195 5  شماره 

صفحات  -

تاریخ انتشار 2015